Affiliation:
1. School of Biological Science and Medical Engineering, Beihang University, Beijing; and
2. Thrombosis and Hemostasis Research Unit, Jiangsu Institute of Hematology, The First Affiliated Hospital of Suzhou University, Suzhou, China
Abstract
Shear-induced platelet adhesion through the interaction of glycoprotein (GP) Ibα with von Willebrand factor (VWF) exposed at the injured vessel wall or atherosclerotic plaque rupture is a prerequisite for the physiological hemostatic process or pathological thrombus formation in stenosed arteries. Here we show that shear-induced interaction of platelets with immobilized VWF results in GPIbα ectodomain shedding. Washed platelets were exposed to VWF-coated glass capillary or cone-and-plate viscometer at different shear rates, and GPIbα ectodomain was shed from platelets, while a small mass of GPIbα COOH-terminal peptide, ∼17 kDa, was increased correspondingly. The extent of GPIbα shedding was enhanced with the concentration of immobilized VWF and the time duration of constant shear stress, whereas it was obviously reduced with the decreased number of adherent platelets. Pretreatment of platelets with membrane-permeable calpain inhibitors and metalloproteinase inhibitor abolished shear-induced GPIbα shedding. Furthermore, GPIbα shedding was obviously diminished by anti-integrin-αIIbβ3monoclonal antibody SZ21, phosphatidylinositol 3-kinase inhibitor wortmannin, and cell-permeable calcium chelator 1,2-bis( o-aminophenoxy)ethane- N, N, N′, N′-tetraacetic acid. These results indicate that shear-induced platelet-VWF interaction results in calpain and metalloproteinase-dependent GPIbα ectodomain shedding. These findings not only have a physiological implication in understanding the presence of glycocalicin in normal circulation, but also suggest a novel mechanism for the negative regulation of platelet function and the limitation of platelet thrombus infinite formation under pathophysiological flow conditions.
Publisher
American Physiological Society
Subject
Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献