Temporal gradient in shear-induced signaling pathway: involvement of MAP kinase, c-fos, and connexin43

Author:

Bao Xuping1,Clark Craig B.1,Frangos John A.1

Affiliation:

1. Department of Bioengineering, University of California, San Diego, La Jolla, California 92093-0412

Abstract

The effect of a temporal gradient in shear and steady shear on the activity of extracellular signal-regulated protein kinases 1 and 2 (ERK1/ERK2), c- fos, and connexin43 (Cx43) in human endothelial cells was investigated. Three laminar flow profiles (16 dyn/cm2), including impulse flow (shear stress abruptly applied for 3 s), ramp flow (shear stress smoothly transitioned at flow onset), and step flow (shear stress abruptly applied at flow onset) were utilized. Relative to static controls, impulse flow stimulated the phosphorylation of ERK1/ERK2 8.5- to 7.5-fold, respectively at 10 min, as well as the mRNA expression of c- fos 51-fold at 30 min, and Cx43 8-fold at 90 min. These high levels of mRNA expression were sustained for at least 4 h. In contrast, ramp flow was unable to significantly induce gene expression and even inhibited the activation of ERK1/ERK2. Step flow, which contains both a sharp temporal gradient in shear stress and a steady shear component, elicited only moderate and transient responses, indicating the distinct role of these fluid shear stimuli in endothelial signal transduction. The specific inhibitor of mitogen-activated protein kinase kinase PD-98059 inhibited impulse flow-induced c -fos and Cx43 mRNA expression. Thus these findings implicate the involvement of ERK1/ERK2, c -fos, and Cx43 in the signaling pathway induced by the temporal gradient in shear.

Publisher

American Physiological Society

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine,Physiology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Functional Analysis of Endothelial Cells in Flow Chambers;Journal of Functional Biomaterials;2022-07-12

2. Endothelial connexin-integrin crosstalk in vascular inflammation;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2021-09

3. The hydromechanics in arteriogenesis;AGING MEDICINE;2020-03-16

4. Mechanobiology of dynamic enzyme systems;APL Bioengineering;2020-03-01

5. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days;Clinical Oral Investigations;2019-11-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3