Author:
Paz Ana Marta,Amezketa Esperanza,Canfora Loredana,Castanheira Nadia,Falsone Gloria,Gonçalves Maria C.,Gould Ian,Hristov Biser,Mastrorilli Marcello,Ramos Tiago,Thompson Rodney,Costantini Edoardo A.C.
Abstract
The area of salt-affected soils is increasing globally, mainly due to land use and management malpractices, which can threaten soil health and the sustainability of farms. Climate change is likely to increase the prevalence of salt-affected soils in many agricultural areas due to increased aridity and, in coastal areas, due to the increase in sea water level. The causes and processes that develop salt-affected soils are diverse and can result in soil salinity, sodicity, alkalinity, or a combination of these conditions. There is a need to continuously update strategies to tackle salt-affected soils, finding solutions tailored at different scales. This work presents a review of the current knowledge related to salt-affected soils and identifies specific strategies and related case studies for the prevention, mitigation, and adaptation to salt accumulation in soils at the field scale while addressing their limitations, advantages, research needs, and innovation potential. The presented case studies show that adequate irrigation management and drainage can be used as a preventive measure to counter salt accumulation in soils. Phyto and bioremediation can be effective practices for the mitigation of soil sodicity. Leaching and drainage can be effective measures for mitigation of soil salinity. Crop rotation and management of soil organic matter can be used as adaptative measures that improve plant tolerance to salt-affected soils, while a newer approach, microbial management, shows innovation potential as an adaptative measure.
Subject
Agronomy and Crop Science
Reference82 articles.
1. Allred B. J., Daniels J. J., Ehsani M. R., 2008. Handbook of Agricultural Geophysics. CRC Press. https://doi.org/10.1201/9781420019353.
2. Amezketa E., Aragües R., Carranza R., Urgel B., 2003. Chemical, Spontaneous and Mechanical Dispersion of Clays in Arid-Zone Soils. Spanish Journal of Agricultural Research 1 (4): 95–107. https://doi.org/10.5424/sjar/2003014-51.
3. Amezketa E., Aragüés R., Gazol R., 2005. Efficiency of Sulfuric Acid, Mined Gypsum, and Two Gypsum By-Products in Soil Crusting Prevention and Sodic Soil Reclamation. Agronomy Journal 97 (3): 983–89. https://doi.org/10.2134/agronj2004.0236.
4. Amezketa E., Del Valle de Lersundi J., 2008. Soil Classification and Salinity Mapping for Determining Restoration Potential of Cropped Riparian Areas. Land Degradation & Development 19 (2): 153–64. https://doi.org/10.1002/ldr.820.
5. Aragüés R.n, Dolores Quilez, and M. Fernandez. 1986. ‘Metodos de Medida de La Salinidad Del Suelo. II- Evaluacion Experimental’. Comunicaciones INIA, January. https://www.researchgate.net/publication/267747881_Metodos_de_medida_de_la_salinidad_del_suelo_II-_Evaluacion_experimental.
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献