Morpho-physiological and molecular responses of two Libyan bread wheat cultivars to plant growth regulators under salt stress

Author:

Hadia El Hadi,Slama AmorORCID,Romdhane LeilaORCID,M’hamed Hatem Cheikh,Abodoma Ahmed Houssein,Fahej Mohamed Ali Saed,Radhouane LeilaORCID

Abstract

To study the effects of salt stress and plant growth regulators (kinetin, gibberellic acid, potassium) on growth, yield, glycine betaine content, phosphoenolpyruvate carboxylase (PEPC) and ribulose biphosphate carboxylase (RBC) gene expression of two Libyan bread wheat varieties, a factorial design of greenhouse experiment with three replications was conducted. Results revealed that salt stress significantly reduced plant growth and productivity of both varieties. Moreover, the addition of kinetin + potassium and gibberellic acid + potassium had improved the performance of the morpho-metric parameters of both genotypes under salt stress; but the performance was more effective for kinetin treatment than for gibberellic acid. At the biochemical level, the results showed that salt stress increased glycine betaine contents in both varieties with different proportions. This increase is more elevated in the presence of kinetin + potassium than the treatment with gibberellic acid+ potassium, which showed an almost similar result as in only salt stress. At the molecular level, the effects of salt stress and plant growth regulators on the PEPC and RBC gene expression showed that the increase was significantly higher for kinetin, gibberellic acid, and salt stress when compared to the control. Highlights - Salt stress reduced plant growth and productivity of bread wheat varieties. - Growth regulator improved the performance of the morphometric parameters. - The performance was more effective for kinetin treatment than for gibberellic acid. - Kinetin improved the glycine betaine gene expression more than gibberellic acid. - Kinetin increased significantly the phosphoenolpyruvate carboxylase and ribulose biphosphate carboxylase gene expression.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3