Abstract
The effects of wind forcing and Earth’s rotation on the transport processes in Lake Garda, Italy, are investigated for the first time under different thermal stratification conditions and typical diurnal wind cycles. Numerical simulations are performed by means of a modeling chain composed of a meteorological (WRF) and a hydrodynamic (Delft3D) model. Transport processes are studied through the combined analysis of the residual (time averaged) flow field and the trajectories of Lagrangian particles. Results show that strong currents develop in winter under the forcing of synoptic northerly Föhn winds, especially in the elongated northern region, where winds are channeled by the steep orography. Significant water volumes are displaced laterally by Ekman transport, producing intense downwelling and upwelling along the steep shores. Instead summer patterns are controlled by the diurnal cycle of local breezes, alternately blowing along the main axis of the lake. The resulting circulation reveals counterclockwise gyres in the northern part, driven by the alternating wind direction and affected by Coriolis force. The analysis suggests that complex circulations can develop in lakes with relatively simple geometries, like the narrow trunk region of Lake Garda, where the effect of Earth’s rotation unexpectedly influences the transport patterns.
Subject
Water Science and Technology,Ecology,Aquatic Science
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献