A Detailed Analysis on Hydrodynamic Response of a Highly Stratified Lake to Spatio-Temporally Varying Wind Field

Author:

Le Hieu Ngoc1,Shintani Tetsuya2,Nakayama Keisuke2ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, Tokyo Metropolitan University, Tokyo 192-0397, Japan

2. Department of Civil Engineering, Kobe University, Kobe 657-8501, Japan

Abstract

Wind is generally considered an important factor driving the transport and mixing processes in stratified enclosed systems such as lakes and reservoirs. Lake Abashiri is one of the instances of such a system. For these systems, typically, the temporally unsteady but spatially uniform nature of wind has been assumed for simplicity. However, the spatial non-uniformity of wind could significantly alter compound hydrodynamic responses. In this study, such responses were investigated under the continuous imposition of different inhomogeneous wind conditions by applying numerical models and integrated analysis. The resultant tracer transport in both uniform and non-uniform wind cases was insignificant for the total study period of 9 days. However, under the short interval of Ti, where Ti is the internal fundamental period, different behaviors of both surface particle transport and the internal wave field were identified. Particularly, surface mass transport responses to higher spatial wind variance were obviously different from those in the uniform case. In addition, internal wave spectra under strong wind magnitude, which has low spatial variances, became identical to that of uniform wind; however, there were some discrepancies in the non-uniform case in the wave spectra under the influence of weak-to-moderate wind of high spatial variances. The results could provide an in-depth understanding of the lake’s hydrodynamic response to inhomogeneous wind which could improve water management in lakes and reservoirs.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3