Effect of zinc foliar application and mycorrhizal inoculation on morpho-physiological traits and yield parameters of two barley cultivars

Author:

Moshfeghi Narjes,Heidari Mostafa,Asghari Hamid Reza,Baradaran Firoz Abadi Mehdi,Abbott Lynette K.,Chen Yinglong

Abstract

Zinc (Zn) plays a vital role in biological systems. Plants require an appropriate balance of this essential micronutrient for growth and optimum yield. This study focused on the effectiveness of foliar application of Zn combined with inoculation with arbuscular mycorrhizal (AM) fungi on morphological, physiological traits and yield parameters of barley cultivars during the 2015-2016 growing season. In this factorial experiment, different forms of foliar applied ZnO (nil, nano Zn, ordinary Zn and nano+ordinary Zn) and inoculation with AM fungi (nil, Glomus mosseae and Rhizophagus irregularis) were investigated for two barley cultivars (Yusuf and Julgeh). The two cultivars differed in response to the form of foliar Zn applied and inoculation with the two commercial inocula of AM fungi. The major responses were significant increases in chlorophyll content (107%), soluble sugar (227%), grain Zn concentration (217%), carbonic anhydrase activity (128%) and grain phytase activity (65%) for cultivar Julgeh inoculated with G. mosseae when sprayed with nano ZnO compared with control. Cultivar Julgeh inoculated with G. mosseae had physiological traits more likely to enhance productivity and economical yield than did cultivar Yusuf that invested more in root traits and vegetative growth. Consequently, the nano form of Zn positively increased root and shoot morphological parameters, physiological parameters and grain Zn concentration, but the ordinary form of Zn enhanced yields and yield parameters. While foliar Zn application and inoculation with AM fungi significantly enhanced all measured parameters, the forms of Zn and inoculation with the two different AM fungi differed in their effectiveness.

Publisher

PAGEPress Publications

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3