Iron and zinc micronutrients and soil inoculation of Trichoderma harzianum enhance wheat grain quality and yield

Author:

Ali Iftikhar,Khan Ajab,Ali Ahmad,Ullah Zahid,Dai Dong-Qin,Khan Naveed,Khan Asif,Al-Tawaha Abdel Rahman,Sher Hassan

Abstract

Malnutrition is mainly caused by iron and zinc micronutrient deficiencies affecting about half of the world's population across the globe. Biofortification of staple crops is the right approach to overcome malnutrition and enhance nutrient contents in the daily food of humans. This study aimed to evaluate the role of foliar application of iron and zinc in Trichoderma harzianum treated soil on various growth characteristics, quality, and yield of wheat varieties. Plants were examined in the absence/presence of T. harzianum, and iron and zinc micronutrients in both optimal and high-stress conditions. Although the symbiotic association of T. harzianum and common wheat is utilized as an effective approach for wheat improvement because of the dynamic growth promoting the ability of the fungus, this association was found tremendously effective in the presence of foliar feeding of micronutrients for the enhancement of various growth parameters and quality of wheat. The utilization of this approach positively increased various growth parameters including spike length, grain mass, biomass, harvest index, and photosynthetic pigments. The beneficial role of T. harzianum in combination with zinc and iron in stimulating plant growth and its positive impact on the intensities of high molecular weight glutenin subunits (HMW-GS) alleles make it an interesting approach for application in eco-friendly agricultural systems. Further, this study suggests a possible alternative way that does not merely enhances the wheat yield but also its quality through proper biofortification of iron and zinc to fulfill the daily needs of micronutrients in staple food.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference73 articles.

1. Effect of iron on the growth and yield contributing parameters of wheat (Triticum aestivum L.);Abbas;J. Anim. Plant Sci.,2009

2. Agronomic and economic response of bread wheat to foliar zinc application;Afshar;Agron. J.,2020

3. Terminal drought stress adaptability in synthetic derived bread wheat is explained by alleles of major adaptability genes and superior phenology;Afzal;Int. J. Agric. Biol.,2018

4. Integrating physiological and genetic approaches for improving drought tolerance in crops,;Ali,2014

5. Comparative assessment of glutenin composition and its relationship with grain quality traits in bread wheat and synthetic derivatives;Ali;Pak. J. Bot.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3