Biogenic Fabrication of Iron Oxide Nanoparticles from Leptolyngbya sp. L-2 and Multiple In Vitro Pharmacogenetic Properties

Author:

Minhas Lubna Anjum1,Kaleem Muhammad12,Minhas Malik Abrar Hassan3,Waqar Rooma1,Al Farraj Dunia A.4,Alsaigh Mona Abdullah5,Badshah Hussain1ORCID,Haris Muhammad1ORCID,Mumtaz Abdul Samad1ORCID

Affiliation:

1. Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan

2. Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S10 2TN, UK

3. Department of Physics, Faculty of Basic and Applied Sciences, International Islamic University, Islamabad 44000, Pakistan

4. Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 24552, Riyadh 11451, Saudi Arabia

5. Department of Chemistry, College of Science, King Saud University, P.O. Box 24552, Riyadh 11495, Saudi Arabia

Abstract

Metallic nanoparticles have received a significant amount of reflection over a period of time, attributed to their electronic, specific surface area, and surface atom properties. The biogenic synthesis of iron oxide nanoparticles (FeONPs) is demonstrated in this study. The green synthesis of metallic nanoparticles (NPs) is acquiring considerable attention due to its environmental and economic superiorities over other methods. Leptolyngbya sp. L-2 extract was employed as a reducing agent, and iron chloride hexahydrate (FeCl3·6H2O) was used as a substrate for the biogenic synthesis of FeONPs. Different spectral methods were used for the characterization of the biosynthesized FeONPs, ultraviolet-visible (UV-Vis) spectroscopy gave a surface plasmon resonance (SPR) peak of FeONPs at 300 nm; Fourier transform infrared (FTIR) spectral analysis was conducted to identify the functional groups responsible for both the stability and synthesis of FeONPs. The morphology of the FeONPs was investigated using scanning electron microscopy (SEM), which shows a nearly spherical shape, and an X-ray diffraction (XRD) study demonstrated their crystalline nature with a calculated crystallinity size of 23 nm. The zeta potential (ZP) and dynamic light scattering (DLS) measurements of FeONPs revealed values of −8.50 mV, suggesting appropriate physical stability. Comprehensive in-vitro pharmacogenetic properties revealed that FeONPs have significant therapeutic potential. FeONPs have been reported to have potential antibacterial and antifungal properties. Dose-dependent cytotoxic activity was shown against Leishmania tropica promastigotes (IC50: 10.73 µg/mL) and amastigotes (IC50: 16.98 µg/mL) using various concentrations of FeONPs. The cytotoxic potential was also investigated using brine shrimps, and their IC50 value was determined to be 34.19 µg/mL. FeONPs showed significant antioxidant results (DPPH: 54.7%, TRP: 49.2%, TAC: 44.5%), protein kinase (IC50: 96.23 µg/mL), and alpha amylase (IC50: 3745 µg/mL). The biosafety of FeONPs was validated by biocompatibility tests using macrophages (IC50: 918.1 µg/mL) and red blood cells (IC50: 2921 µg/mL). In conclusion, biogenic FeONPs have shown potential biomedical properties and should be the focus of more studies to increase their nano-pharmacological significance for biological applications.

Funder

King Saud University

Publisher

MDPI AG

Subject

Chemical Health and Safety,Health, Toxicology and Mutagenesis,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3