MHD mixed convection heat transfer over a non-linear slender elastic sheet with variable fluid properties

Author:

Prasad K. V.1,Vaidya Hanumesh1,Vajravelu K.2

Affiliation:

1. Department of Mathematics , VSK University , Vinayaka Nagar , Ballari 583 105, Karnataka , India

2. Department of Mathematics , Department of Mechanical, Materials and Aerospace Engineering, University of Central Florida , Orlando , FL 32816 , USA

Abstract

Abstract An analysis is presented for mixed convection and heat transfer in a viscous electrically conducting fluid flow at an impermeable stretching vertical sheet with variable thickness. The nonlinear equations that describe the fluid flow, and heat transfer processes have been solved using the Keller-box method. A limited parametric study is undertaken to determine the sensitivity and changes in the flow and temperature fields with respect to variations in the buoyancy parameter, the temperature dependent viscosity and thermal conductivity parameters, the plate velocity power index, and the Prandtl number which are presented in graphical and tabulated formats. To validate the results, comparisons are made with the available results in the literature for some special cases and the results are found to be in good agreement. The effects of embedded parameters on the dimensionless velocity profiles and temperature are examined through graphs. The variation of Local Nusselt number is also analysed. One of the important findings of our study is that the velocity distribution at a point near the plate decreases as the wall thickness parameter increases and hence the thickness of the boundary layer becomes thinner when m < 1. Further, the effect of the magnetic field is to reduce the fluid velocity and to increase the temperature field.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Engineering (miscellaneous),Modeling and Simulation,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3