Nonlinear Convection Flow of a Micropolar Nanofluid Past a Stretching Sphere with Convective Heat Transfer

Author:

Ibrahim Wubshet1,Kenea Gadisa1

Affiliation:

1. Department of Mathematics, Ambo University, P.O. Box 19, Ambo, Ethiopia

Abstract

An incompressible, steady combined nonlinear convective transport system on a micropolar nanofluid through a stretching sphere with convective heat transfer was investigated. The conservation equations corresponding to momentum, microrotation, thermal energy, and concentration particles have been formulated with suitable boundary constraints. By using the required non-dimensional variables, the conservation equations have been turned into a set of high-order standard differential equations. Then, an implicit finite difference method, also known as the Keller-Box Method (KBM), was used to numerically solve the flow problem. The obtained outcomes are displayed through graphs and tables to explain the impact of various governing variables over velocity, temperature, concentration, number of skin friction, wall coupled stress, Nusselt number, and Sherwood number. The findings demonstrate that increasing the convective heat parameter Bi enhances the factor of skin friction, local Nusselt number, Sherwood number, velocity field, and temperature profile while lowering the wall-coupled stress. It is observed that for high values of the material parameter β, the fluid velocity and the spin of the micro-elements both increase, which causes the dynamic viscosity and microrotation velocity to decrease. In addition, as the rates of magnetic constant Ma, thermophoresis Nt and Brownian movement Nb rise, the thermal distribution and its thickness of boundary layer increase. However, it decline along the enlarging quantities of nonlinear convection parameter λ, Prandtl number Pr, material parameter β, and solutal Grashof number Gm, which agrees to increase fluid density. When the range of thermophoresis Nt surges, it causes an increment in the nanoparticle species, but the opposite behavior have seen in the case of Brownian number Nb, and Lewis number Le. The comparison made with the related published paper achieves a significant agreement. The numerical result is generated through the implementation of the computational software MATLAB R2023a.

Publisher

American Scientific Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3