Physico-mechanical characteristics and multiscale stochastic modeling of cement mortar reinforced with oil palm mesocarp fibers

Author:

Bisong M. S.1,Lepov V. V.2,Landrine T.3

Affiliation:

1. College of Technology, University of Buea, Cameroon; Ammosov’s North-Eastern Federal University

2. Larionov’s Institute of Physical-Technical Problems of the North, SB RAS; Academy of Science of Republic of Sakha (Yakutia)

3. ENSET Kumba

Abstract

Over the years, housing has always been one of the basic human needs. Stones, clay, wood and cement are common construction materials. Currently, cement structures are highly solicited both in our country and all over the world. However, cement structures suffer from stress-induced cracks attributed to overloading. The study was carried out to find out the possibility of minimizing the crack formation and increasing the stability of cement structures to fracture. The goal of the study is to characterize the physical and mechanical properties of the cement mortar reinforced with oil palm mesocarp fibers (OPMF) to increase the crack resistance of the structures built with cement mortar, as well as to simulate nucleation and growth of cracks up to the fracture. Composition of the prepared samples differed in the content of OPMF: 0.25, 0.5, 0.75, 1, 1.25, and 1.5 of sand weight. Analysis of the physical and mechanical characteristics of the samples carried out after 7, 28 and 45 days revealed that the rate of water absorption increases in proportion to the increase in fiber content and ranges from 2.4 to 11.6. The three-point bending test was used to determine the flexural strength and Young’s modulus (YM) upon bending. The flexural strength and YM increase as the fiber content of the sample increases from 0 to 0.25 and then decrease. The maximum values of the flexural strength (5.475_MPa) and YM (283.633_MPa) in bending were obtained after 45 days on a sample containing 0.25_% fibers. The compression test was used to determine the compressive strength and YM under compression. The compressive strength and YM decrease with increasing fiber content in the samples. The maximum values of the compressive strength (23.18_MPa) and YM (310.044_MPa) were obtained for the sample containing 0 of fibers. Analysis of the destruction of organic fiber cement samples revealed that the crack propagation occurs by the mechanism of coalescence of micropores. Stochastic modeling carried out for different fiber content showed that the crack growth rate also increases in proportion to the increase in the fiber content. Thus, the main cause of fracture in compressive and bending tests is the viscous growth of the pores and ductile-brittle crack growth through the cement grains.

Publisher

TEST-ZL Publishing

Subject

Condensed Matter Physics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3