Study of the mechanical behavior and multiscale simulation of the crack propagation in a bilinga wooden beam

Author:

Bisong S. M.1,Lepov V. V.2,Etinge A. R.3

Affiliation:

1. College of Technology, University of Buea; Department of Mechanical Engineering, ENSET Douala, University of Douala

2. Larionov Institute of Physical-Technical Problems of the North of Siberian Branch of the Russian academy of sciences, — Separate Division of Federal research Center «Yakut Scientific Centre SB RAS»

3. Department of Civil Engineering, ENSET Douala, University of Douala

Abstract

The mechanical behavior of local wood species (Bilinga) in the south west region in Cameroon during rainy and dry seasons and the mechanical behavior of wooden beam under bend loading are studied. The three points flexural tests were used to determine the mechanical properties of the wood under study. ANSYS 2020 R1 finite element (FE) software is used for numerical simulations at a macroscopic level using one of the newer technologies called Smart crack growth, which was introduced in the 2019 version. The geometry was modeled in SolidWorks with an initial crack length of 4 and 8 mm introduced in each sample and then imported to ANSYS workbench for further analysis with ANSYS which has all the tools to perform linear fracture. The stress intensity factor (SIF) determines the fracture toughness of a material which is subjected to linear-elastic fracture mechanics (LEFM) where a variable of the critical stress intensify is denoted as KIc. The fatigue crack growth was modeled using Paris’ law. The crack growth was simulated based on Mode I crack specimen with an initial crack length of 4 and 8 mm, respectively. The stochastic multiscale modeling of crack growth on meso- and microscale is used to compare the crack growth rate in the approach of a heterogeneous material and taking into account the microstructure and fracture mechanism of the Bilinga wood. The results of stochastic modeling of the crack growth in the array of cracks and pores of a characteristic size shows that the simulation is close to FE-modeling results. Therefore, the stochastic simulation of the crack growth in wood at meso- and microscale shows the lower local stress intensity factors and slower crack growth due to the existence of the scale-time hierarchy. The crack growth rate vcr at a macroscale ranges within 0.845 – 0.9 × 10–3 m/sec which corresponds to the macroscopic value of the fracture toughness KIc.

Publisher

TEST-ZL Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of ice-matrix composite fracture;Arctic and Subarctic Natural Resources;2024-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3