MRI-Based Proton Treatment Planning for Base of Skull Tumors

Author:

Shafai-Erfani Ghazal1,Lei Yang1,Liu Yingzi1,Wang Yinan1,Wang Tonghe1,Zhong Jim1,Liu Tian1,McDonald Mark1,Curran Walter J.1,Zhou Jun1,Shu Hui-Kuo1,Yang Xiaofeng1

Affiliation:

1. Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA

Abstract

AbstractPurpose:To introduce a novel, deep-learning method to generate synthetic computed tomography (SCT) scans for proton treatment planning and evaluate its efficacy.Materials and Methods:50 Patients with base of skull tumors were divided into 2 nonoverlapping training and study cohorts. Computed tomography and magnetic resonance imaging pairs for patients in the training cohort were used for training our novel 3-dimensional generative adversarial network (cycleGAN) algorithm. Upon completion of the training phase, SCT scans for patients in the study cohort were predicted based on their magnetic resonance images only. The SCT scans obtained were compared against the corresponding original planning computed tomography scans as the ground truth, and mean absolute errors (in Hounsfield units [HU]) and normalized cross-correlations were calculated. Proton plans of 45 Gy in 25 fractions with 2 beams per plan were generated for the patients based on their planning computed tomographies and recalculated on SCT scans. Dose-volume histogram endpoints were compared. A γ-index analysis along 3 cardinal planes intercepting at the isocenter was performed. Proton distal range along each beam was calculated.Results:Image quality metrics show agreement between the generated SCT scans and the ground truth with mean absolute error values ranging from 38.65 to 65.12 HU and an average of 54.55 ± 6.81 HU and a normalized cross-correlation average of 0.96 ± 0.01. The dosimetric evaluation showed no statistically significant differences (p > 0.05) within planning target volumes for dose-volume histogram endpoints and other metrics studied, with the exception of the dose covering 95% of the target volume, with a relative difference of 0.47%. The γ-index analysis showed an average passing rate of 98% with a 10% threshold and 2% and 2-mm criteria. Proton ranges of 48 of 50 beams (96%) in this study were within clinical tolerance adopted by 4 institutions.Conclusions:This study shows our method is capable of generating SCT scans with acceptable image quality, dose distribution agreement, and proton distal range compared with the ground truth. Our results set a promising approach for magnetic resonance imaging–based proton treatment planning.

Publisher

International Journal of Particle Therapy

Subject

Radiology Nuclear Medicine and imaging,Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3