“Under the hood”: artificial intelligence in personalized radiotherapy

Author:

Gianoli Chiara1ORCID,De Bernardi Elisabetta2,Parodi Katia1

Affiliation:

1. Department of Experimental Physics – Medical Physics, Faculty for Physics of the Ludwig-Maximilians-Universität München (LMU Munich) , Geschwister-Scholl-Platz 1 , München, 80539, Germany

2. School of Medicine and Surgery, Università degli Studi di Milano-Bicocca , Piazza dell'Ateneo Nuovo 1 , Milano, 20126, Italy

Abstract

Abstract This review presents and discusses the ways in which artificial intelligence (AI) tools currently intervene, or could potentially intervene in the future, to enhance the diverse tasks involved in the radiotherapy workflow. The radiotherapy framework is presented on 2 different levels for the personalization of the treatment, distinct in tasks and methodologies. The first level is the clinically well-established anatomy-based workflow, known as adaptive radiation therapy. The second level is referred to as biology-driven workflow, explored in the research literature and recently appearing in some preliminary clinical trials for personalized radiation treatments. A 2-fold role for AI is defined according to these 2 different levels. In the anatomy-based workflow, the role of AI is to streamline and improve the tasks in terms of time and variability reductions compared to conventional methodologies. The biology-driven workflow instead fully relies on AI, which introduces decision-making tools opening uncharted frontiers that were in the past deemed challenging to explore. These methodologies are referred to as radiomics and dosiomics, handling imaging and dosimetric information, or multiomics, when complemented by clinical and biological parameters (ie, biomarkers). The review explicitly highlights the methodologies that are currently incorporated into clinical practice or still in research, with the aim of presenting the AI’s growing role in personalized radiotherapy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3