Nonlinear optimal control for free-floating space robotic manipulators

Author:

Rigatos G.1ORCID,Pomares J.2ORCID,Abbaszadeh M.3ORCID,Busawon K.4ORCID,Gao Z.5ORCID,Zouari F.6ORCID

Affiliation:

1. Unit Industrial Autom, Industrial Systems Institute, 26504 Rion Patras, Greece

2. Department of Systems Engineering, University of Alicante, 03690 Alicante, Spain

3. Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, 12065 Troy, NY, USA

4. Department of Mechanical Engineering, University of Northumbria, NE1 8ST Newcastle, UK

5. Department of Electrical Engineering, University of Northumbria, NE1 8ST Newcastle, UK

6. Laboratoire d’ Automatique, Ecole d’ Ingénieurs de Tunis, Tunis 1002, Tunisia

Abstract

Free-floating space robotic manipulators (FSRMs) are robotic arms mounted on space platforms, such as spacecraft or satellites which are used for the repair of space vehicles or the removal of noncooperating targets such as inactive material remaining in orbit. In this paper, a novel nonlinear optimal control method is applied to the dynamic model of FSRMs. First, the state-space model of a 3-DOF free-floating space robot is formulated and its differential flatness properties are proven. This model undergoes approximate linearization around a temporary operating point that is recomputed at each time-step of the control method. The linearization relies on Taylor series expansion and on the associated Jacobian matrices. For the linearized state-space model of the free-floating space robot a stabilizing optimal (H-infinity) feedback controller is designed. This controller stands for the solution of the nonlinear optimal control problem under model uncertainty and external perturbations. To compute the controller’s feedback gains an algebraic Riccati equation is repetitively solved at each iteration of the control algorithm. The stability properties of the control method are proven through Lyapunov analysis. The proposed nonlinear optimal control approach achieves fast and accurate tracking of setpoints under moderate variations of the control inputs and a minimum dispersion of energy by the actuators of the free-floating space robot.

Funder

Unit of Industrial Automation / Industrial Systems Institute

Publisher

World Scientific Pub Co Pte Ltd

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3