Affiliation:
1. Department of Engineering Science, Faculty of Engineering, University of Tehran, Tehran, Iran
Abstract
In this paper, we prove that Dedekind–Mertens lemma holds only for those semimodules whose subsemimodules are subtractive. We introduce Gaussian semirings and prove that bounded distributive lattices are Gaussian semirings. Then we introduce weak Gaussian semirings and prove that a semiring is weak Gaussian if and only if each prime ideal of this semiring is subtractive. We also define content semialgebras as a generalization of polynomial semirings and content algebras and show that in content extensions for semirings, minimal primes extend to minimal primes and discuss zero-divisors of a content semialgebra over a semiring who has Property ([Formula: see text]) or whose set of zero-divisors is a finite union of prime ideals. We also discuss formal power series semirings and show that under suitable conditions, they are good examples of weak content semialgebras.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献