Divisibility Properties of the Semiring of Ideals of an Integral Domain

Author:

Chang Gyu Whan1,Kim HwanKoo2

Affiliation:

1. Department of Mathematics Education, Incheon National University, Incheon 22012, Korea

2. Division of Computer and Information Engineering, Hoseo University, Asan 336-795, Korea

Abstract

Let D be an integral domain, F+(D) (resp., f+(D)) be the set of nonzero (resp., nonzero finitely generated) ideals of D, R1 = f+(D) ∪ {(0)}, and R2 = F+(D) ∪ {(0)}. Then (Ri, ⊕, ⊗) for i = 1, 2 is a commutative semiring with identity under I ⊕ J = I + J and I ⊗ J = IJ for all I, J ∈ Ri. In this paper, among other things, we show that D is a Prüfer domain if and only if every ideal of R1 is a k-ideal if and only if R1 is Gaussian. We also show that D is a Dedekind domain if and only if R2 is a unique factorization semidomain if and only if R2 is a principal ideal semidomain. These results are proved in a more general setting of star operations on D.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Valuations on Ternary Semirings;KYUNGPOOK MATH J;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3