Affiliation:
1. Teachers College of Chengdu University, Chengdu University, Chengdu 610106, P. R. China
2. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, P. R. China
Abstract
Let [Formula: see text] be an integral domain, [Formula: see text] and [Formula: see text] the set of fractional ideals of [Formula: see text]. Let [Formula: see text] a finitely generated ideal with [Formula: see text]. For a torsion-free [Formula: see text]-module [Formula: see text], define [Formula: see text] for some [Formula: see text]. Call [Formula: see text] a [Formula: see text]-module if [Formula: see text]. On [Formula: see text], the function [Formula: see text] is a star-operation of finite character. An integral ideal [Formula: see text] maximal with respect to being a proper [Formula: see text]-ideal is a prime ideal called a maximal [Formula: see text]-ideal. A torsion-free [Formula: see text]-module [Formula: see text] is called [Formula: see text]-flat, if [Formula: see text] is a flat [Formula: see text]-module for each [Formula: see text], the set of maximal [Formula: see text]-ideals of [Formula: see text]. [Formula: see text] is called a Prüfer [Formula: see text]-multiplication domain (P[Formula: see text]MD), if [Formula: see text] is a valuation ring for each [Formula: see text]. We characterize [Formula: see text]-flat modules in a manner similar to the characterization of flat modules, study them when they are rings [Formula: see text] with [Formula: see text] and characterize P[Formula: see text]MDs using them and compare our work with similar work in the literature.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献