Purity over Prüfer v-multiplication domains

Author:

Xing Shiqi1,Wang Fanggui2

Affiliation:

1. College of Teachers Chengdu University, Chengdu 610106, P. R. China

2. College of Mathematics and Software Science, Sichuan Normal University, Chengdu 610068, P. R. China

Abstract

It is well known that a domain [Formula: see text] is a Prüfer domain if and only if for [Formula: see text]-modules, relative divisibility implies purity. In this paper, we extend this result to Prüfer [Formula: see text]-multiplication domains (P[Formula: see text]MDs). To do this, we introduce the concept of [Formula: see text]-pure exact sequences over commutative rings with zero divisors, and we prove that a domain [Formula: see text] is a P[Formula: see text]MD if and only if for [Formula: see text]-modules, relative divisibility implies [Formula: see text]-purity. Also, we compare [Formula: see text]-purity with purity and relative divisibility by giving examples.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Absolutely w-Pure Modules and Weak FP-Injective Dimensions;Results in Mathematics;2022-03-25

2. On w-FI-flat and w-FI-injective modules;ANNALI DELL'UNIVERSITA' DI FERRARA;2022-02-25

3. A NOTE ON φ-PRUFER v-MULTIPLICATION RINGS;B KOREAN MATH SOC;2022

4. w-FP-projective Modules and Dimensions;Springer Proceedings in Mathematics & Statistics;2022

5. Relative FP-injective modules and relative IF rings;Communications in Algebra;2021-03-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3