p-Numerical semigroups with p-symmetric properties

Author:

Komatsu Takao1,Ying Haotian1

Affiliation:

1. Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China

Abstract

The so-called Frobenius number in the famous linear Diophantine problem of Frobenius is the largest integer such that the linear equation [Formula: see text] ([Formula: see text] are given positive integers with [Formula: see text]) does not have a non-negative integer solution [Formula: see text]. The generalized Frobenius number (called the [Formula: see text]-Frobenius number) is the largest integer such that this linear equation has at most [Formula: see text] solutions. That is, when [Formula: see text], the [Formula: see text]-Frobenius number is the original Frobenius number. In this paper, we introduce and discuss [Formula: see text]-numerical semigroups by developing a generalization of the theory of numerical semigroups based on this flow of the number of representations. That is, for a certain non-negative integer [Formula: see text], [Formula: see text]-gaps, [Formula: see text]-symmetric semigroups, [Formula: see text]-pseudo-symmetric semigroups, and the like are defined, and their properties are obtained. When [Formula: see text], they correspond to the original gaps, symmetric semigroups and pseudo-symmetric semigroups, respectively.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The p-Frobenius Number for the Triple of the Generalized Star Numbers;Symmetry;2024-08-22

2. Frobenius Numbers Associated with Diophantine Triples of x2-y2=zr;Symmetry;2024-07-05

3. On the determination of p-Frobenius and related numbers using the p-Apéry set;Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas;2024-02-03

4. p-Numerical Semigroups of the Triples of the Sequence $$(a^n-b^n)/(a-b)$$;Springer Proceedings in Mathematics & Statistics;2023-11-15

5. The p-Numerical Semigroup of the Triple of Arithmetic Progressions;Symmetry;2023-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3