The p-Numerical Semigroup of the Triple of Arithmetic Progressions

Author:

Komatsu Takao1ORCID,Ying Haotian1

Affiliation:

1. Department of Mathematical Sciences, School of Science, Zhejiang Sci-Tech University, Hangzhou 310018, China

Abstract

For given positive integers a1,a2,⋯,ak with gcd(a1,a2,⋯,ak)=1, the denumerant d(n)=d(n;a1,a2,⋯,ak) is the number of nonnegative solutions (x1,x2,⋯,xk) of the linear equation a1x1+a2x2+⋯+akxk=n for a positive integer n. For a given nonnegative integer p, let Sp=Sp(a1,a2,⋯,ak) be the set of all nonnegative integer n’s such that d(n)>p. In this paper, by introducing the p-numerical semigroup, where the set N0\Sp is finite, we give explicit formulas of the p-Frobenius number, which is the maximum of the set N0\Sp, and related values for the triple of arithmetic progressions. The main aim is to determine the elements of the p-Apéry set.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference38 articles.

1. Komatsu, T., and Ying, H. (2024). p-numerical semigroups with p-symmetric properties. J. Algebra Appl., 23, (Online Ready).

2. Mathematical questions with their solutions;Sylvester;Educ. Times,1884

3. On subinvariants, i.e., semi-invariants to binary quantics of an unlimited order;Sylvester;Am. J. Math.,1882

4. A remark related to the Frobenius problem;Brown;Fibonacci Quart.,1993

5. A note on Brown and Shiue’s paper on a remark related to the Frobenius problem;Fibonacci Quart.,1994

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3