Affiliation:
1. Facultad de Ciencias Exactas, Ingeniería y Agrimensura, Universidad Nacional de Rosario, Av. Pellegrini 250, (2000) Rosario, Argentina
Abstract
Given a nilpotent Lie algebra 𝔫 we construct a spectral sequence which is derived from a filtration of its Chevalley–Eilenberg differential complex and converges to the Lie algebra cohomology of 𝔫. The limit of this spectral sequence gives a grading for the Lie algebra cohomology, except for the cohomology groups of degree 0, 1, dim 𝔫 - 1 and dim 𝔫 as we shall prove. We describe the spectral sequence associated to a nilpotent Lie algebra which is a direct sum of two ideals, one of them of dimension one, in terms of the spectral sequence of the co-dimension one ideal. Also, we compute the spectral sequence corresponding to each real nilpotent Lie algebra of dimension less than or equal to six.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Algebra and Number Theory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Cone‐equivalent nilpotent groups with different Dehn functions;Proceedings of the London Mathematical Society;2022-11-20
2. A Cornucopia of Carnot Groups in Low Dimensions;Analysis and Geometry in Metric Spaces;2022-01-01