A Cornucopia of Carnot Groups in Low Dimensions

Author:

Le Donne Enrico1,Tripaldi Francesca2

Affiliation:

1. Department of Mathematics , University of Fribourg , Fribourg , Switzerland & Department of Mathematics and Statistics , University of Jyväskylä , Jyväskylä , Finland

2. Mathematisches Institut , University of Bern , Bern , Switzerland

Abstract

Abstract Stratified groups are those simply connected Lie groups whose Lie algebras admit a derivation for which the eigenspace with eigenvalue 1 is Lie generating. When a stratified group is equipped with a left-invariant path distance that is homogeneous with respect to the automorphisms induced by the derivation, this metric space is known as Carnot group. Carnot groups appear in several mathematical contexts. To understand their algebraic structure, it is useful to study some examples explicitly. In this work, we provide a list of low-dimensional stratified groups, express their Lie product, and present a basis of left-invariant vector fields, together with their respective left-invariant 1-forms, a basis of right-invariant vector fields, and some other properties. We exhibit all stratified groups in dimension up to 7 and also study some free-nilpotent groups in dimension up to 14.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,Geometry and Topology,Analysis

Reference33 articles.

1. [1] A. Agrachev, D. Barilari, and U. Boscain. A Comprehensive Introduction to Sub-Riemannian Geometry, volume 181. Cambridge University Press, 2019.

2. [2] V. del Barco. On a spectral sequence for the cohomology of a nilpotent Lie algebra. Journal of Algebra and Its Applications, 14(01):1450078, 2015.

3. [3] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin, 2007. ISBN 978-3-540-71896-3; 3-540-71896-6.

4. [4] L. Capogna, D. Danielli, S. D. Pauls, and J. T. Tyson. An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem, volume 259 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2007. ISBN 978-3-7643-8132-5; 3-7643-8132-9.

5. [5] Y. de Cornulier. On the quasi-isometric classification of locally compact groups. In New directions in locally compact groups, volume 447 of London Math. Soc. Lecture Note Ser., pages 275–342. Cambridge Univ. Press, Cambridge, 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3