Cotangent spaces and separating re-embeddings

Author:

Kreuzer Martin1ORCID,Ngoc Long Le2,Robbiano Lorenzo3

Affiliation:

1. Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany

2. Fakultät für Informatik und Mathematik, Universität Passau, D-94030 Passau, Germany and Department of Mathematics, University of Education, Hue University, 34 Le Loi Street, Hue City, Vietnam

3. Dipartimento di Matematica, Università di Genova, Via Dodecaneso 35, I-16146 Genova, Italy

Abstract

Given an affine algebra [Formula: see text], where [Formula: see text] is a polynomial ring over a field [Formula: see text] and [Formula: see text] is an ideal in [Formula: see text], we study re-embeddings of the affine scheme [Formula: see text], i.e. presentations [Formula: see text] such that [Formula: see text] is a polynomial ring in fewer indeterminates. To find such re-embeddings, we use polynomials [Formula: see text] in the ideal [Formula: see text] which are coherently separating in the sense that they are of the form [Formula: see text] with an indeterminate [Formula: see text] which divides neither a term in the support of [Formula: see text] nor in the support of [Formula: see text] for [Formula: see text]. The possible numbers of such sets of polynomials are shown to be governed by the Gröbner fan of [Formula: see text]. The dimension of the cotangent space of [Formula: see text] at a [Formula: see text]-linear maximal ideal is a lower bound for the embedding dimension, and if we find coherently separating polynomials corresponding to this bound, we know that we have determined the embedding dimension of [Formula: see text] and found an optimal re-embedding.

Funder

Nafosted

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Re-embeddings of affine algebras via Gröbner fans of linear ideals;Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry;2024-01-31

2. Elimination by Substitution;2024

3. Restricted Gröbner fans and re-embeddings of affine algebras;São Paulo Journal of Mathematical Sciences;2022-10-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3