Re-embeddings of affine algebras via Gröbner fans of linear ideals

Author:

Kreuzer MartinORCID,Long Le Ngoc,Robbiano Lorenzo

Abstract

AbstractGiven an affine algebra $$R=K[x_1,\dots ,x_n]/I$$ R = K [ x 1 , , x n ] / I over a field K, where I is an ideal in the polynomial ring $$P=K[x_1,\dots ,x_n]$$ P = K [ x 1 , , x n ] , we examine the task of effectively calculating re-embeddings of I, i.e., of presentations $$R=P'/I'$$ R = P / I such that $$P'=K[y_1,\dots ,y_m]$$ P = K [ y 1 , , y m ] has fewer indeterminates. For cases when the number of indeterminates n is large and Gröbner basis computations are infeasible, we have introduced the method of Z-separating re-embeddings in Kreuzer et al. (J Algebra Appl 21, 2022) and Kreuzer, et al. (São Paulo J Math Sci, 2022). This method tries to detect polynomials of a special shape in I which allow us to eliminate the indeterminates in the tuple Z by a simple substitution process. Here we improve this approach by showing that suitable candidate tuples Z can be found using the Gröbner fan of the linear part of I. Then we describe a method to compute the Gröbner fan of a linear ideal, and we improve this computation in the case of binomial linear ideals using a cotangent equivalence relation. Finally, we apply the improved technique in the case of the defining ideals of border basis schemes.

Funder

Universität Passau

Publisher

Springer Science and Business Media LLC

Reference21 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3