On automorphisms of free center-by-metabelian and nilpotent groups and Lie algebras

Author:

Kofinas C. E.1,Papistas A. I.1

Affiliation:

1. Department of Mathematics, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece

Abstract

Let [Formula: see text] be a field of characteristic zero. For positive integers [Formula: see text] and [Formula: see text], with [Formula: see text], let [Formula: see text] be a free center-by-metabelian and nilpotent Lie algebra over [Formula: see text] of rank [Formula: see text] and class [Formula: see text], freely generated by a set [Formula: see text]. It is shown that the automorphism group [Formula: see text] of [Formula: see text] is generated by the general linear group [Formula: see text] and two more IA-automorphisms. Let [Formula: see text] be the field of rational numbers. We give [Formula: see text] the structure of a group, say [Formula: see text], via the Baker–Campbell–Hausdorff formula. Let [Formula: see text] be the subgroup of [Formula: see text] generated by [Formula: see text]. We prove that the subgroup of [Formula: see text] generated by the tame automorphisms [Formula: see text] and three more IA-automorphisms of [Formula: see text] has finite index in [Formula: see text]. For [Formula: see text], the subgroup of [Formula: see text] generated by the tame automorphisms [Formula: see text] and two more IA-automorphisms of [Formula: see text] has finite index in [Formula: see text]. A similar result is proved for the automorphism group of a free center-by-metabelian and nilpotent group of rank [Formula: see text] and class [Formula: see text].

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Algebra and Number Theory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IA-automorphisms of relatively free nilpotent torsion-free groups and Lie algebras;Communications in Algebra;2020-07-03

2. Automorphisms of the completion of relatively free Lie algebras;International Journal of Algebra and Computation;2018-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3