Affiliation:
1. Faculty of Sciences, Department of Mathematics, Aristotle University of Thessaloniki, GR 541 24, Thessaloniki, Greece
Abstract
Let [Formula: see text] be a relatively free Lie algebra of finite rank [Formula: see text], with [Formula: see text], [Formula: see text] be the completion of [Formula: see text] with respect to the topology defined by the lower central series [Formula: see text] of [Formula: see text] and [Formula: see text], with [Formula: see text]. We prove that, with respect to the formal power series topology, the automorphism group [Formula: see text] of [Formula: see text] is dense in the automorphism group [Formula: see text] of [Formula: see text] if and only if [Formula: see text] is nilpotent. Furthermore, we show that there exists a dense subgroup of [Formula: see text] generated by [Formula: see text] and a finite set of IA-automorphisms if and only if [Formula: see text] is generated by [Formula: see text] and a finite set of IA-automorphisms independent upon [Formula: see text] for all [Formula: see text]. We apply our study to several varieties of Lie algebras.
Publisher
World Scientific Pub Co Pte Lt