Scaling Challenges for Advanced CMOS Devices

Author:

Jacob Ajey P.1,Xie Ruilong1,Sung Min Gyu1,Liebmann Lars1,Lee Rinus T. P.1,Taylor Bill1

Affiliation:

1. GLOBALFOUNDRIES, 400 Stonebreak Road ext., Malta, New York 12020, USA

Abstract

The economic health of the semiconductor industry requires substantial scaling of chip power, performance, and area with every new technology node that is ramped into manufacturing in two year intervals. With no direct physical link to any particular design dimensions, industry wide the technology node names are chosen to reflect the roughly 70% scaling of linear dimensions necessary to enable the doubling of transistor density predicted by Moore’s law and typically progress as 22nm, 14nm, 10nm, 7nm, 5nm, 3nm etc. At the time of this writing, the most advanced technology node in volume manufacturing is the 14nm node with the 7nm node in advanced development and 5nm in early exploration. The technology challenges to reach thus far have not been trivial. This review addresses the past innovation in response to the device challenges and discusses in-depth the integration challenges associated with the sub-22nm non-planar finFET technologies that are either in advanced technology development or in manufacturing. It discusses the integration challenges in patterning for both the front-end-of-line and back-end-of-line elements in the CMOS transistor. In addition, this article also gives a brief review of integrating an alternate channel material into the finFET technology, as well as next generation device architectures such as nanowire and vertical FETs. Lastly, it also discusses challenges dictated by the need to interconnect the ever-increasing density of transistors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3