Affiliation:
1. Electrical Engineering Department, University of California at Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095-1594, USA
Abstract
A surface-micromachined free-space micro-optical bench (FS-MOB) technology has been proposed to monolithically integrate micro-optical elements, optomechanical structures, micropositioners, and microactuators on the same substrate. Novel three-dimensional micro-optical elements have been fabricated by surface-micromachining techniques. The optical axes of these optical elements are parallel to the substrate, which enables the entire free-space optical system to be integrated on a single substrate. Mocro-scale Fresnel lenses, refractive microlenses, mirrors, beam-splitters, gratings, and precision optical mounts have been successfully fabricated and characterized. Integration of micro-optical elements with translation or rotation stages provides on chip optical alignment or optomechanical switching. This new free-space micro-optical bench technology could significantly reduce the size, weight, an cost of most optical systems, and could have a significant impact on optical switching, optical sensing and optical data storage systems as well as packaging of optoelectronic components.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials
Cited by
30 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献