GaN TRANSISTORS FOR POWER SWITCHING AND MILLIMETER-WAVE APPLICATIONS

Author:

UEDA TETSUZO1,UEMOTO YASUHIRO1,TANAKA TSUYOSHI1,UEDA DAISUKE1

Affiliation:

1. Semiconductor Device Research Center, Semiconductor Company, Panasonic Corporation, 1 Kotari-yakemachi, Nagaokakyo-shi, Kyoto 617-8520, JAPAN

Abstract

We review our state-of-the-art GaN -based device technologies for power switching at low frequencies and for future millimeter-wave communication systems. These two applications are emerging in addition to the power amplifiers at microwave frequencies which have been already commercialized for cellular base stations. Technical issues of the power switching GaN device include lowering the fabrication cost, normally-off operation and further increase of the breakdown voltages extracting full potential of GaN -based materials. We establish flat and crack-free epitaxial growth of GaN on Si which can reduce the chip cost. Our novel device structure called Gate Injection Transistor (GIT) achieves normally-off operation with high enough drain current utilizing conductivity modulation. Here we also present the world highest breakdown voltage of 10400V in AlGaN / GaN HFETs. In this paper, we also present high frequency GaN -based devices for millimeter-wave applications. Short-gate MIS-HFETs using in-situ SiN as gate insulators achieve high fmax up to 203GHz. Successful integration of low-loss microstrip lines with via-holes onto sapphire enables compact 3-stage K -band amplifier MMIC of which the small-signal gain is as high as 22dB at 26GHz. The presented devices are promising for the two future emerging applications demonstrating high enough potential of GaN -based transistors.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electronic, Optical and Magnetic Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3