EXPERIMENTAL INVESTIGATIONS ON THE INTERACTIONS BETWEEN LIQUIDS AND STRUCTURES TO PASSIVELY CONTROL THE SURFACE-DRIVEN CAPILLARY FLOW IN MICROFLUIDIC LAB-ON-A-CHIP SYSTEMS TO SEPARATE THE MICROPARTICLES FOR BIOENGINEERING APPLICATIONS

Author:

MUKHOPADHYAY SUBHADEEP1

Affiliation:

1. Department of Electronics and Computer Engineering, National Institute of Technology Arunachal Pradesh, Ministry of Human Resource Development (Government of India), Yupia, Papum Pare-791112, Arunachal Pradesh, India

Abstract

In this research paper, total 246 individual microfluidic devices have been fabricated by maskless lithography, hot embossing lithography and direct bonding technique. The effect of surface area to volume ratio on the surface-driven capillary flow of different liquids has been experimentally investigated in these microfluidic devices fabricated by polymethylmethacrylate (PMMA). Also, the individual effects of liquid viscosity and surface wettability on the surface-driven capillary flow of different liquids are experimentally investigated. The polystyrene particles of 10[Formula: see text][Formula: see text]m diameters have been separated from the aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems with 100% separation efficiency. Also, the polystyrene particles of 5[Formula: see text][Formula: see text]m diameters have been separated from a different set of aqueous microparticle suspensions in the microfluidic lab-on-a-chip systems with 100% separation efficiency. The individual designs of the microfluidic lab-on-a-chip systems are a novel approach in this research paper. The effect of surface area to volume ratio on the separation time is experimentally investigated as another novel approach of this research paper.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3