N-Limited Versus Ga-Limited Growth on ${\rm GaN}(000\bar{1})$ by MBE Using NH3

Author:

Held R.1,Crawford D. E.1,Johnston A. M.1,Dabiran A. M.1,Cohen P. I.1

Affiliation:

1. Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455, USA

Abstract

GaN was grown on [Formula: see text] by MBE using NH 3 and a Ga Knudsen cell. The growth kinetics on samples of this polarity were investigated with desorption mass spectroscopy (DMS) and reflection high energy electron diffraction (RHEED). Both techniques were used to observe and control surface termination, Ga condensation and surface temperature. GaN growth and decomposition rates were measured by DMS. Two stable surface terminations were found to exist — N-terminated and Ga-terminated [Formula: see text]. The N-terminated surface also contained hydrogen which desorbed during growth at a rate proportional to the growth rate. Low temperature reconstructions were only observed by adding weakly adsorbed Ga on top of the Ga-terminated surface. During growth two distinct growth regimes were identified: growth under excess NH 3 and growth under excess Ga. Growth is limited in both regimes by GaN decomposition at high temperatures with an activation energy of 3.4 eV. Growth in the excess Ga regime ceased below the Ga condensation temperature. Under conditions of excess NH 3, strong but damped oscillations in the specular RHEED intensity were observed on smooth surfaces. Contrary to previous suggestions, the period of these oscillations did not correspond exactly to integral layer deposition and was not characteristic of a narrow growth front. Further, the growth mode changed from island nucleation to step flow with an activation energy of 1.2 eV. Under conditions of excess Ga, the diffraction was 2-D but RHEED intensity oscillations were not observed, indicating a step flow growth mode. In this latter regime RHEED measurements were very sensitive to termination changes on the [Formula: see text] surface, and the growth rate was found to decrease linearly with increasing Ga flux. This reduction is explained by a model in which weakly adsorbed Ga blocks reaction at strongly bound Ga. A map is presented to provide a framework for categorizing the overall growth.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3