THE FIRST PRINCIPLE STUDY OF COMPARISON OF DIVALENT AND TRIVALENT IMPURITY IN RRAM DEVICES USING GGA+U

Author:

KHERA EJAZ AHMAD1,ULLAH HAFEEZ1,IMRAN MUHAMMAD2,ALGADI HASSAN34,HUSSAIN FAYYAZ5,KHALIL RANA MUHAMMAD ARIF5

Affiliation:

1. Biophotonics Imaging Techniques Laboratory, Institute of Physics, The Islamia University of Bahawalpur, Pakistan

2. Department of Physics, Government College University Faisalabad, 38000, Pakistan

3. Department of Electrical Engineering, Faculty of Engineering, Najran University, P. O. Box 1988, Najran 11001, Saudi Arabia

4. Promising Center for Sensors and Electronic Devices (PCSED), Najran University, P. O. Box 1988, Najran 11001, Saudi Arabia

5. Materials Simulation Research Laboratory (MSRL), Department of Physics, Bahauddin Zakariya University, Multan Pakistan, 60800, Pakistan

Abstract

Resistive switching (RS) performances had prodigious attention due to their auspicious potential for data storage. Oxide-based devices with metal insulator metal (MIM) structure are more valuable for RS applications. In this study, we have studied the effect of divalent (nickel) as well as trivalent (aluminum) dopant without and with oxygen vacancy ([Formula: see text] in hafnia ([Formula: see text]-based resistive random-access memory (RRAM) devices. All calculations are carried out within the full potential linearized augmented plane-wave (FP-LAPW) method based on the WIEN2k code by using generalized gradient approximation (GGA) and generalized gradient approximation with U Hubbard parameters (GGA+U) approach. The studies of the band structure, density of states and charge density reveal that HfNiO2+Vo are more appropriate dopant to enhance the conductivity for RRAM devices.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3