EXPERIMENTAL INVESTIGATION ON MECHANICAL PROPERTIES OF FDM-BASED NYLON CARBON PARTS USING ANN APPROACH

Author:

BALAJI N. S.12,VELMURUGAN C.3,SARAVANA KUMAR M.4,SIVAKUMAR M.1,ASOKAN P.1

Affiliation:

1. Department of Production Engineering, National Institute of Technology Tiruchirappalli, Tamil Nadu 620015, India

2. Department of Mechanical Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, India

3. Department of Mechanical Engineering, Indian Institute of Information Technology Tiruchirappalli, Tamil Nadu 620012, India

4. Graduate Institute of Manufacturing Technology, National Taipei University of Technology, Taipei 10608, Taiwan

Abstract

The implementation of the fused deposition modeling (FDM) technique in the production system is mainly due to its flexibility and ability to fabricate complex 3D prototypes and geometries. However, the mechanical strength of the printed parts needs to be investigated which was influenced by the process parameters such as layer thickness (LT), raster angle (RA), and Infill Density (ID). Therefore, these process parameters need to be optimized to attain better mechanical strength from the FDM printed parts. In this research, ePA-CF filament material was used to fabricate the specimens based on the selected process parameters such as LT (0.07, 0.14, and 0.20[Formula: see text]mm), RA (0, 45, and 90) and ID (50%, 75%, and 100%). The artificial neural network (ANN) method was implemented to determine the influential printing process parameters. Tensile, flexural, and impact tests were considered as the response parameters based on the various combination of the input parameters. It was concluded that the printing of nylon carbon parts using [Formula: see text][Formula: see text]mm, [Formula: see text], [Formula: see text] retains improved tensile strength of 66 MPa, flexural strength of 87[Formula: see text]MPa and impact strength of 12.5[Formula: see text]KJ/m2. Further, the propagation of cracks and the mode of failure were examined using SEM fractography. These observations substantiate that the selection of an optimal combination of FDM parameters assists in enhancing the mechanical strength of the printed nylon carbon parts.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3