Effect of build orientation on the mechanical reliability of 3D printed ABS

Author:

Keleş ÖzgürORCID,Blevins Caleb Wayne,Bowman Keith J.

Abstract

Purpose Increasing use of 3D printing techniques to manufacture consumer products and open-source designs raises the question of “What is the mechanical reliability of 3D printed parts?” Therefore, the purpose of this paper is to investigate the impacts of build orientation on the mechanical reliability of acrylonitrile butadiene styrene (ABS) produced using 3D printing. Design/methodology/approach Tensile tests on ABS specimens were performed with and without a hole in the center, which were produced by fused deposition modeling (FDM). Seven sets of approximately 30 specimens were printed in XY, XZ and C+45 orientations to obtain reliable fracture statistics. Weibull analysis was performed to quantify the variation in the tensile strength. Findings The Weibull analysis showed that the reliability of FDM produced ABS can be as low as advanced ceramics. Weibull moduli of specimens without a hole were between 26 and 69, and specimens with a hole had Weibull moduli between 30 and 41. P-type deviations from the Weibull statistics were observed. The XZ orientation resulted in the highest average fracture strength for specimens with and without a hole, and C+45 orientation resulted in the lowest strength. Practical implications As the Weibull distribution relates the applied stress to probability of failure, the Weibull analysis provides a practical design criterion to achieve specific reliability levels for additively manufactured parts. Originality/value This study, for the first time, provides Weibull statistics for FDM-produced ABS parts, which can be used to predict mechanical reliability.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3