CO2 LASER ABLATION MICROCHANNEL BASED ON KOCH FRACTAL PRINCIPLE

Author:

CHEN XUEYE1ORCID,TIAN YUE1,ZHANG SHUAI1

Affiliation:

1. Faculty of Mechanical Engineer and Automation, Liaoning University of Technology, Jinzhou 121001, P. R. China

Abstract

In this paper, we focussed on the processing power of CO2 laser systems and the impact of scanning speed, scanning power and number of scans on the quality of microchannels. We created microchannels which are based on the Koch fractal principle through a flexible and low-cost CO2 laser system. The processing and manufacturing method of Koch fractal micromixer on polymethyl methacrylate (PMMA) substrate was also studied. The microchannel structure based on the Koch fractal principle can increase the contact area and mixing time of the fluid and improve the mixing efficiency of the micromixer. In the experiment, our speed is 2, 4 and 6[Formula: see text]mm/s, the number of scans is 2/3/4 times and the power is 4, 8 and 12[Formula: see text]W. As the power and number of scans increase and the speed decreases, the width and depth of the microchannel are changed more clearly, which contributes to the successful thermal bonding of the Koch fractal micromixer and avoids thermal bonding due to overvoltage. By comparing the experimental data, we found that the width and depth of the channel are ideal when the speed is 2[Formula: see text]mm/s, the number of scans is 4 and the power is 12[Formula: see text]W. Because of the lower cost of PMMA, the use of CO2 laser systems to fabricate microchannels on PMMA substrates will have broad application value, reduce cost and be easier to manufacture.

Funder

The Key Project of Department of Education of Liaoning Province

Liaoning Province BaiQianWan Talent Project

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3