Affiliation:
1. Faculty of Mechanical Engineer and Automation, Liaoning University of Technology, Jinzhou 121001, P. R. China
Abstract
In this paper, we focussed on the processing power of CO2 laser systems and the impact of scanning speed, scanning power and number of scans on the quality of microchannels. We created microchannels which are based on the Koch fractal principle through a flexible and low-cost CO2 laser system. The processing and manufacturing method of Koch fractal micromixer on polymethyl methacrylate (PMMA) substrate was also studied. The microchannel structure based on the Koch fractal principle can increase the contact area and mixing time of the fluid and improve the mixing efficiency of the micromixer. In the experiment, our speed is 2, 4 and 6[Formula: see text]mm/s, the number of scans is 2/3/4 times and the power is 4, 8 and 12[Formula: see text]W. As the power and number of scans increase and the speed decreases, the width and depth of the microchannel are changed more clearly, which contributes to the successful thermal bonding of the Koch fractal micromixer and avoids thermal bonding due to overvoltage. By comparing the experimental data, we found that the width and depth of the channel are ideal when the speed is 2[Formula: see text]mm/s, the number of scans is 4 and the power is 12[Formula: see text]W. Because of the lower cost of PMMA, the use of CO2 laser systems to fabricate microchannels on PMMA substrates will have broad application value, reduce cost and be easier to manufacture.
Funder
The Key Project of Department of Education of Liaoning Province
Liaoning Province BaiQianWan Talent Project
Publisher
World Scientific Pub Co Pte Lt
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献