SYNTHESIS AND CHARACTERIZATION OF NANOCRYSTALLINE Co-DOPED ZnO THIN FILMS PREPARED BY CHEMICAL SPRAY PYROLYSIS FOR OPTOELECTRONIC APPLICATIONS

Author:

HASSAN FAEZ M.1,NAJIM AUS A.2ORCID

Affiliation:

1. Physics Department, College of Education, Mustansiriyah University, Baghdad, Iraq

2. Nanotechnology and Advanced Materials Research Center, University of Technology, Baghdad, Iraq

Abstract

ZnO:Co thin films were synthesized by the chemical spray pyrolysis (CSP) on glass substrates. Then, investigated the impact of Co doping concentration on its physical properties. XRD analyses show that all films have a polycrystalline structure of hexagonal ZnO. The crystallite size increased from 18[Formula: see text]nm to 25[Formula: see text]nm with Co doping concentrations. Furthermore, the unit cell volume increased from 47.485[Formula: see text]Å to 47.831[Formula: see text]Å, and the Zn–O bond length expanded from 1.97588[Formula: see text]Å to 1.98071[Formula: see text]Å. SEM observations reveal the formation of fiber-like nanostructures in the Co-doped thin films. The diameter of nanofibers increased with Co doping concentration from 260[Formula: see text]nm to 700[Formula: see text]nm. The optical characteristics were studied by the UV-Visible spectrophotometer and manifest the optical transparency vary with Co doping. In addition, the band gap decreases from 3.27[Formula: see text]eV to 2.73[Formula: see text]eV with increasing Co doping concentrations. The conductivity varied from 3.35[Formula: see text]S[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] to 19.88[Formula: see text]S[Formula: see text][Formula: see text][Formula: see text]m[Formula: see text] with Co doping concentrations. Empirical models were proposed to evaluate the correlated variables with excellent accuracy with the experimental data. The best result was accomplished in ZnO:Co1% films, where good transparency and high conductivity were achieved.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3