Author:
Abdulsattar M. A., ,Hussein M. T.,Kahaly M. U., ,
Abstract
In the present work, a density functional theory (DFT) calculation to simulate reduced graphene oxide (rGO) hybrid with zinc oxide (ZnO) nanoparticle's sensitivity to NO2 gas is performed. In comparison with the experiment, DFT calculations give acceptable results to available bond lengths, lattice parameters, X-ray photoelectron spectroscopy (XPS), energy gaps, Gibbs free energy, enthalpy, entropy, etc. to ZnO, rGO, and ZnO/rGO hybrid. ZnO and rGO show n-type and p-type semiconductor behavior, respectively. The formed p-n heterojunction between rGO and ZnO is of the staggering gap type. Results show that rGO increases the sensitivity of ZnO to NO2 gas as they form a hybrid. ZnO/rGO hybrid has a higher number of vacancies that can be used to attract oxygen atoms from NO2 and change the resistivity of the hybrid. The combined reduction of oxygen from NO2 and NO can give a very high value of the Gibbs free energy of reaction that explains the ppb level sensitivity of the ZnO/rGO hybrid. The dissociation of NO2 in the air reduces the sensitivity of the ZnO/rGO hybrid at temperatures higher than 300 ̊C.
Publisher
Virtual Company of Physics
Subject
Surfaces, Coatings and Films,Physics and Astronomy (miscellaneous),Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献