SYNTHESIS AND CHARACTERIZATION OF (ZNO)–(CO3O4) NANOCOMPOSITE VIA SPRAY PYROLYSIS PROCESS: THE USE OF THE BRUGGEMAN MODEL ON OPTICAL PROPERTIES PREVISION

Author:

BOUREGUIG K. M. E.1,TABET-DERRAZ H.1,SEDDIK T.2,BENALI M. A.1

Affiliation:

1. Laboratory of Materials Manufacturing and Characterization, Djillali Liabes University, Sidi Bel Abbes 22000, Algeria

2. Laboratoire de Physique Quantique de la Matière et de Modélisation, Mathématique, (LPQ3M), Université de Mascara, Mascara 29000, Algeria

Abstract

In the present paper, (ZnO)–(Co3O4) nanocomposite thin films have been prepared by using spray pyrolysis deposition on a glass substrate at 350C. After that, the as-obtained films have been characterized and analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and the double beam UV-visible (UV-vis) spectrophotometer. Furthermore, the Bruggeman model is used to predict the evolution of the optical dielectric constant (real and imaginary parts: [Formula: see text] and [Formula: see text] to compare them with those obtained from the experimental results. The XRD pattern reveals that the nanocomposite film has diffraction peaks 2[Formula: see text], 36.95 corresponding respectively to the (220), (311) planes of cubic Co3O4 and another about of 2[Formula: see text] corresponding to the (101) plane of Wurtzite ZnO. Using the Debye Scherrer formula, the crystallite size of (ZnO)[Formula: see text]–(Co3O[Formula: see text] nanocomposite is found about 32[Formula: see text]nm, while the obtained thickness of this nanocomposite is about 780[Formula: see text]nm using the DekTak Stylus profilometer. Besides, the morphology analysis shows that the nanocomposite sample is well covered without holes and/or cracks and it has uniform dense grains. The evaluation of the transmittance, reflectance, refraction index, extinction coefficient, real and imaginary parts of dielectric constant as function of wavelength illustrates that the optical response of nanocomposite thin film (ZnO)[Formula: see text]–(Co3O[Formula: see text] depends on the influence of two mediums of pure materials ZnO and Co3O4 and their interaction. In addition, the direct band gap vs incident photon energy obtained from the Tauc plot equation shows that this nanocomposite has three values of band gap energy which are [Formula: see text][Formula: see text]eV, [Formula: see text][Formula: see text]eV (correspond to pure Co3O4 film) and [Formula: see text][Formula: see text]eV (correspond to pure ZnO film). Besides, the application of the Bruggeman equation indicates that the influence of the values of volume concentration and optical dielectric constant of the ingredient nanomaterials (ZnO and Co3O[Formula: see text] is significant on the value of the effective dielectric constant of nanocomposite thin film. The specific result of this study is the similarity between the spectra obtained from the Bruggeman model and the measured one, which proves that the application of this model is useful for the prediction of the optical properties of the composite.

Publisher

World Scientific Pub Co Pte Lt

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3