EXPERIMENTAL INVESTIGATION OF TRIBOLOGICAL CHARACTERISTICS ON AA7068–ZrB2 IN-SITU AMCs

Author:

NALLUSAMY M.1,NANDHAKUMAR S.1,SURIYAPRAKASH M.1

Affiliation:

1. Department of Mechanical Engineering, Dr.N.G.P. Institute of Technology, Dr.N.G.P. Nagar, Kalapatti Road, Coimbatore 641048, Tamil Nadu, India

Abstract

In the present era, aluminum-based metal matrix composites, commonly known as aluminum matrix composites (AMCs), play a crucial role in fabricating lighter weight components in the aerospace, automotive, aircraft and marine industries. Intensive research is required to fabricate AMCs economically. In this recent research, AA7068–ZrB2 AMCs were successfully produced using the in-situ method of fabrication. The inorganic salts such as K2ZrF6 and KBF4 reacted with molten aluminum at 850C and formed ZrB2 particles in the aluminum melt itself. The castings of AA7068–ZrB2 AMCs were obtained with 0, 3, 6 and 9 volume fractions (vol.%) of ZrB2 in-situ particles. The pin-on-disc wear apparatus was used to conduct the dry sliding wear analysis of AA7068–ZrB2 in-situ AMCs. The wear experiments were conducted in line with the Design of Experiments (DoE). An orthogonal array of [Formula: see text] was employed for the DoE. The effects of wear parameters such as vol.% of ZrB2 particles, sliding speed, sliding distance and normal load on the wear rate (WR) and coefficient of friction (COF) were observed. The effects of individual parameters on the WR and COF were observed by contour plot, residual plot and Analysis of Variance (ANOVA). The worn surfaces of AA7068–ZrB2 (0, 3, 6 and 9 vol.%) AMCs were also observed using the field-emission scanning electron microscopy (FESEM).

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3