INVESTIGATION OF MACHINABILITY PERFORMANCE IN TURNING OF Ti–6Al–4V ELI ALLOY USING FIREFLY ALGORITHM AND GRNN APPROACHES

Author:

KUMAR RAMANUJ1ORCID,PANDEY ANISH1,SAHOO ASHOK KUMAR1,RAFIGHI MOHAMMAD2

Affiliation:

1. School of Mechanical Engineering, KIIT University, Patia, Bhubaneswar 751024, Odisha, India

2. Department of Mechanical Engineering, University of Turkish Aeronautical Association, 06790 Etimesgut, Ankara, Turkey

Abstract

Ti–6Al–4V ELI alloy is one of the most familiar materials for orthopedic implants, aeronautical parts, marine components, oil and gas production equipment, and cryogenic vessel applications. Therefore, its appropriate quality of finishing is highly essential for these applications. But the characteristics like lower modulus of elasticity, lesser thermal conductivity, and high chemical sensitivity placed it in the categories of difficult-to-cut metal alloys. Also, tooling cost is one of the prime issues in the machining of this alloy. Therefore, this research is more inclined to use a low-budget uncoated carbide tool in turning the Ti–6Al–4V ELI alloy. Also, the selection of suitable levels of machining parameters is highly indispensable to get the appropriate surface finish with a low tooling cost. So, the [Formula: see text] experimental design is utilized to check the performances of the uncoated carbide tool in the turning tests. The performance indexes like surface roughness (Ra), flank wear of tool (VBc), and material removal rate (MRR) are measured and studied with the help of surface plots and interaction plots. Further, the Firefly Algorithm optimization is employed to find the optimal cutting parameters and cutting response values. The local optimal values of the input parameters a, f, and Vc are estimated as 0.3241[Formula: see text]mm, 0.0893[Formula: see text]mm/rev, and 82.41[Formula: see text]m/min, respectively. Similarly, the global optimal values for the responses Ra, VBc, and MRR are reported as 0.6321[Formula: see text]μm, 0.09253[Formula: see text]mm, and 24.61[Formula: see text]g/min, individually. Additionally, to predict the responses, Generalized Regression Neural Network (GRNN) modeling is employed and the average absolute error for each response is noticed to be less than 1%. Therefore, the GRNN modeling tool is strongly recommended for various machining applications.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3