ELECTROCHEMICAL ARC DRILLING OF NICKEL–TITANIUM SHAPE MEMORY ALLOY USING MOLYBDENUM ELECTRODE: INVESTIGATION, MODELING AND OPTIMIZATION

Author:

KUMAR NITISH1,KUMAR AMARESH1,DAS SUDHANSU RANJAN2

Affiliation:

1. Department of Production & Industrial Engineering, National Institute of Technology, Jamshedpur 831014, Jharkhand, India

2. Department of Production Engineering, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India

Abstract

In the present scenario, electrochemical arc machining (ECAM) (hybrid of electric discharge erosion and electrochemical dissolution) is an evolving procedure for difficulty in machining the materials due to constraints of existing processes. This research aims to investigate the machinability of Ni[Formula: see text]Ti alloy through electrochemical arc drilling using molybdenum electrode. Electrolyte concentration (ethanol with ethylene glycol and sodium chloride), supply voltage, and tool rotation are considered as the variable factors to evaluate the ECAM performance characteristics in drilling blind hole operation concerning overcut (OC), tool wear rate (TWR) and materials removal rate (MRR). Consequently, response surface methodology is implemented for predictive modeling of various performance characteristics. Finally, multi-objective optimization through desirability function approach (DFA) has produced a set of optimal parameters to improve the productivity along with the accuracy, which is the prime requirement for the industrial applicability of the ECAM process. Results demonstrated that supply voltage is the influential key factor for improvement of machining rate. Scanning electron microscope (SEM) photographs revealed the development of heat affected zone (HAZ), white layer, melted droplet, craters, re-solidified material, ridge-rich surface and voids as well as cavities around the end-boundary surfaces of a blind hole. Composition analysis through energy dispersive spectroscopy (EDS) indicated the oxygen content on the machined surface because electrolyte breakdown causes oxidation to take place at elevated temperatures across the machining zone. Moreover, carbide precipitation like TiC was found in the melting zone of the drilled hole, as revealed by X-ray diffraction (XRD) analyses, which has the affinity to reduce the SMA properties in HAZ.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3