Laboratory Demonstration of the Local Oscillator Concept for the Event Horizon Imager

Author:

Kudriashov V.1ORCID,Martin-Neira M.2,Lia E.2,Michalski J.3,Kant P.3,Trofimowicz D.3,Belloni M.2,Jankovic P.2,Waller P.2,Brandt M.4

Affiliation:

1. Department of Astrophysics/IMAPP, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands

2. ESTEC - ESA, Noordwijk, The Netherlands

3. SpaceForest, Gdynia, Poland

4. RPG Radiometer Physics GmbH, Meckenheim, Germany

Abstract

Black hole imaging challenges the third-generation space VLBI, the Very Long Baseline Interferometry, to operate on a 500[Formula: see text]GHz band. The coherent integration time needed here is 450[Formula: see text]s though the available space oscillators cannot offer more than 10[Formula: see text]s. Self-calibration methods might solve this issue in an interferometer formed by three antenna/satellite systems, but the need for the third satellite increases the mission costs. A frequency transfer is of special interest to alleviate both performance and cost issues. A concept of two-way optical frequency transfer is examined to investigate its suitability to enable space-to-space interferometry, in particular, to image the “shadows” of black holes from space. The concept, promising on paper, has been demonstrated by tests. The laboratory test set-up is presented and the verification of the temporal stability using standard analysis tool as TimePod has been passed. The resulting Allan Deviation is dominated by the 1/[Formula: see text] phase noise trend since the frequency transfer timescale of interest is shorter than 0.2[Formula: see text]s. This trend continues into longer integration times, as proven by the longest tests spanning over a few hours. The Allan Deviation between derived 103.2[Formula: see text]GHz oscillators is [Formula: see text]/[Formula: see text] within 10[Formula: see text][Formula: see text][Formula: see text]s that degrades twice towards the longest delay of 0.2[Formula: see text]s. The worst case satisfies the requirement with a margin of 11 times. The obtained coherence in the range of 0.997[Formula: see text]0.9998 is beneficial for space VLBI at 557[Formula: see text]GHz. The result is of special interest to future science missions for black hole imaging from space.

Funder

European Space Agency

Dutch NWO

Publisher

World Scientific Pub Co Pte Ltd

Subject

Astronomy and Astrophysics,Instrumentation

Reference7 articles.

1. A BISTATIC RADIOMETRY SYSTEM FOR OBJECT MAPPING

2. Mattiocco, F. et al. [2015] in Proc. 26th Int. Symp. Space Terahertz Technology, p. 29.

3. Simulations of imaging the event horizon of Sagittarius A* from space

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3