Imaging the event horizon of M87* from space on different timescales

Author:

Shlentsova A.,Roelofs F.,Issaoun S.,Davelaar J.,Falcke H.

Abstract

Context. The concept of a new space very long baseline interferometry (SVLBI) system named the Event Horizon Imager (EHI) has been proposed to dramatically improve black hole imaging and provide precise tests of the theory of general relativity. Aims. This paper presents imaging simulations for the EHI. We investigate the ability to make high-resolution movies of the black hole shadow and jet launching region around the supermassive black hole M87* and other black hole jets with a three-satellite EHI configuration. We aim to identify orbital configurations to optimize the -coverage to image variable sources. Methods. Observations of general relativistic magnetohydrodynamics (GRMHD) models were simulated for the configuration, consisting of three satellites in circular medium earth orbits with an orbital plane perpendicular to the line of sight. The expected noise was based on preliminary system parameters. Movie frames, for which a part of the -coverage may be excessively sparse, were reconstructed with algorithms that recover missing information from other frames. Averaging visibilities accumulated over multiple epochs of observations with an appropriate orbital configuration then improves the image quality. With an enhanced signal-to-noise ratio, timescales of observed variability were decreased. Results. Our simulations show that the EHI with standard system parameters is capable of imaging the variability in the M87* environment on event horizon scales with approximately a month-long temporal resolution. The EHI with more optimistic noise parameters (enhancing the signal-to-noise ratio about 100-fold) would allow for imaging of the variability on gravitational timescales. Observations with an EHI setup at lower frequencies are capable of imaging the variability in extended jets. Conclusions. Our study shows that the EHI concept can be used to image the variability in a black hole environment and extended jets, allowing for stronger tests of gravity theories and models of black hole accretion, plasma dynamics, and jet launching.

Funder

ERC

NSF

NASA

NWO

Simons Foundation

John Templeton Foundation

Gordon and Betty Moore Foundation

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3