PHYSICAL MECHANISMS GENERATING SPONTANEOUS SYMMETRY BREAKING AND A HIERARCHY OF SCALES

Author:

CONSOLI M.1,STEVENSON P. M.2

Affiliation:

1. Istituto Nazionale di Fisica Nucleare, Sezione di Catania, Corso Italia 57, 95129 Catania, Italy

2. T. W. Bonner Laboratory, Physics Department, Rice University, PO Box 1892, Houston, TX 77251-1892, USA

Abstract

We discuss the phase transition in (3+1)-dimensional λΦ4 theory from a very physical perspective. The particles of the symmetric phase ("phions") interact via a hard-core repulsion and an induced, long-range -1/r3 attraction. If the phion mass is sufficiently small, the lowest-energy state is not the "empty" state with no phions, but is a state with a nonzero density of phions Bose–Einstein condensed in the zero-momentum mode. The condensate corresponds to the spontaneous-symmetry-breaking vacuum with <Φ> ≠ 0 and its excitations ("phonons" in atomic physics language) correspond to Higgs particles. The phase transition happens when the phion's physical mass m is still positive; it does not wait until m2 passes through zero and becomes negative. However, at and near the phase transition, m is much, much less than the Higgs mass Mh. This interesting physics coexists with "triviality;" all scattering amplitudes vanish in the continuum limit, but the vacuum condensate becomes infinitely dense. The ratio [Formula: see text], which goes to zero in the continuum limit, can be viewed as a measure of nonlocality in the regularized theory. An intricate hierarchy of length scales naturally arises. We speculate about the possible implications of these ideas for gravity and inflation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3