Quantum Non-Locality and the CMB: What Experiments Say

Author:

Consoli Maurizio,Pluchino AlessandroORCID,Zizzi Paola

Abstract

“Non-locality is most naturally incorporated into a theory in which there is a special frame of reference. One possible candidate for this special frame of reference is the one in which the Cosmic Microwave Background (CMB) is isotropic. However, other than the fact that a realistic interpretation of quantum mechanics requires a preferred frame and the CMB provides us with one, there is no readily apparent reason why the two should be linked” (L. Hardy). Starting from this remark, we first argue that, given the present view of the vacuum, the basic tenets of Quantum Field Theory cannot guarantee that Einstein Special Relativity, with no preferred frame, is the physically realized version of relativity. Then, to try to understand the nature of the hypothetical preferred Σ−frame, we consider the so-called ether drift experiments, those precise optical measurements that try to detect, in the laboratory, a small angular dependence of the two-way velocity of light and then to correlate this angular dependence with the direct CMB observations with satellites in space. By considering all experiments performed so far, from Michelson–Morley to the present experiments with optical resonators, and analyzing the small observed residuals in a modern theoretical framework, the long-sought Σ−frame tight to the CMB naturally emerges. Finally, if quantum non-locality reflects some effect propagating at vastly superluminal speed vQI→∞, its ultimate origin could be hidden somewhere in the infinite speed cs→∞ of vacuum density fluctuations.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference118 articles.

1. The Trouble with Quantum Mechanics;Weinberg;The New York Review of Books,2017

2. A “garden of forking paths” – The quantum mechanics of histories of events

3. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

4. Speakable and Unspeakable in Quantum Mechanics,2004

5. A Bell-type theorem without hidden variables

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3