Feasibility study of TPC tracker detector for the circular collider

Author:

Yuan Zhiyang12,Qi Huirong12,Wang Haiyun12,Dai Hongliang12,Chen Yuanbo12,Ouyang Qun12,Zhang Jian12,Cai Yiming3,Li Yulan3

Affiliation:

1. State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049, China

2. University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China

3. Department of Engineering Physics, Tsinghua University, Hai Dian District, Beijing 100084, China

Abstract

The discovery of a SM Higgs boson at the LHC brought about great opportunity to investigate the feasibility of a Circular Electron Positron Collider (CEPC) operating at center-of-mass energy of 240 GeV, as a Higgs factory, with designed luminosity of about [Formula: see text]. The CEPC provides a much cleaner collision environment than the LHC, it is ideally suited for studying the properties of Higgs boson with greater precision. Another advantage of the CEPC over the LHC is that the Higgs boson can be detected through the recoil mass method by only reconstructing [Formula: see text] boson decay without examining the Higgs decays. In Concept Design Report (CDR), the circumference of CEPC is 100 km, with two interaction points available for exploring different detector design scenarios and technologies. The baseline design of CEPC detector is an ILD-like concept, with a superconducting solenoid of 3.0 Tesla surrounding the inner silicon detector, TPC tracker detector and the calorimetry system. Time Projection Chambers (TPCs) have been extensively studied and used in many fields, especially in particle physics experiments, including STAR and ALICE. The TPC detector will operate in continuous mode on the circular machine. To fulfill the physics goals of the future circular collider and meet Higgs/[Formula: see text] run, a TPC with excellent performance is required. We have proposed and investigated the ions controlling performance of a novel configuration detector module. The aim of this study is to suppress ion backflow (IBF) continually. In this paper, some update results of the feasibility and limitation on TPC detector technology R&D will be given using the hybrid gaseous detector module.

Funder

National Key Programme for S&T Research and Development

National Natural Science Foundation of China

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ParticleNet and its application on CEPC jet flavor tagging;The European Physical Journal C;2024-02-14

2. Design of the readout electronics for a Micromegas-TPC detector;Journal of Instrumentation;2020-08-26

3. Preface;International Journal of Modern Physics A;2020-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3