ParticleNet and its application on CEPC jet flavor tagging

Author:

Zhu YongfengORCID,Liang Hao,Wang Yuexin,Qu Huilin,Zhou Chen,Ruan Manqi

Abstract

AbstractQuarks (except top quarks) and gluons produced in collider experiments hadronize and fragment into sprays of stable particles, called jets. Identification of quark flavor is desired for collider experiments in high-energy physics, relying on flavor tagging algorithms. In this study, using a full simulation of the Circular Electron Positron Collider (CEPC), we investigate the flavor tagging performance of two different algorithms: ParticleNet, based on a Graph Neural Network, and LCFIPlus, based on the Gradient Booted Decision Tree. Compared to LCFIPlus, ParticleNet significantly enhances flavor tagging performance, resulting in a significant improvement in benchmark measurement accuracy, i.e., a 36% improvement for $$\sigma (ZH)\cdot Br(Z\rightarrow \nu \bar{\nu }, H\rightarrow c\bar{c})$$ σ ( Z H ) · B r ( Z ν ν ¯ , H c c ¯ ) measurement and a 75% improvement for $$|V_{cb}|$$ | V cb | measurement via W boson decay, respectively, when the CEPC operates as a Higgs factory at the center-of-mass energy of 240 GeV and collects an integrated luminosity of 5.6 ab$$^{-1}$$ - 1 . We compare the performance of ParticleNet and LCFIPlus at different vertex detector configurations, observing that the inner radius is the most sensitive parameter, followed by material budget and spatial resolution.

Publisher

Springer Science and Business Media LLC

Reference32 articles.

1. R.L. Workman et al., [Particle Data Group], Review of Particle Physics. PTEP 2022, 083C01 (2022). https://doi.org/10.1093/ptep/ptac097

2. W. Kilian, T. Ohl, J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC. Eur. Phys. J. C 71, 1742 (2011)

3. S. Torbjörn, S. Mrenna, P. Skands, PYTHIA 6.4 Physics and Manual. J. High Energy Phys. 2006(05), 026 (2006)

4. European Strategy Group, Deliberation document on the 2020 Update of the European Strategy for Particle Physics (Brochure), CERN-ESU-016

5. J.B. Guimarães da Costa et al., [CEPC Study Group], CEPC Conceptual Design Report: Volume 2-Physics & Detector. arXiv:1811.10545 [hep-ex]

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3