GAUGE CONDENSATES AND GAUGE DYNAMICS, THE COSMOLOGICAL AND STRONG CP PROBLEMS

Author:

GUENDELMAN E. I.1

Affiliation:

1. Physics Department, Ben Gurion University of the Negev, Beer Sheva 84105, Israel

Abstract

Some evidence for gauge field condensation in gauge theories is reviewed. The gravitational effects of gauge field condensates, in particular those associated with four-index field strengths are analyzed, paying special attention to their effect on the cosmological constant problem (CCP) and on the matching of different phases of the theory. Gauge fields composed of elementary scalars and their role in the CCP are studied. In particular such gauge fields can define a composite measure of integration which is a total derivative leading to the invariance under changes in the Lagrangian density L, L→L+ constant . In such models, when gravity is formulated in the first order formalism, gauge field condensates define and control particle physics dynamics and drive inflation while the true vacuum of the theory is one with zero cosmological constant. It is also shown that models of gauge fields composed of elementary scalars, like the "No Scale Nonlinear σ Model" can produce a new geometrical-type solution of the strong CP problem, which is possible when a condensate of a composite gauge field is present. It is shown that the theory without the cosmological constant problem explained here has a scale invariance, spontaneously broken by the expectation value of a four-index field strength. However, no massless "dilaton" appears as a result of this SSB.

Publisher

World Scientific Pub Co Pte Lt

Subject

Astronomy and Astrophysics,Nuclear and High Energy Physics,Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gravitational and topological effects on $\sqrt{-F^2}$ confinement dynamics;International Journal of Modern Physics A;2014-09-16

2. CONNECTING THE NONSINGULAR ORIGIN OF THE UNIVERSE, THE VACUUM STRUCTURE AND THE COSMOLOGICAL CONSTANT PROBLEM;International Journal of Modern Physics D;2013-06-26

3. NONSINGULAR ORIGIN OF THE UNIVERSE AND ITS PRESENT VACUUM ENERGY DENSITY;International Journal of Modern Physics A;2011-07-10

4. BAGS AND CONFINEMENT GOVERNED BY SPONTANEOUS SYMMETRY BREAKING OF SCALE INVARIANCE;International Journal of Modern Physics A;2010-09-10

5. Emerging universe from scale invariance;Journal of Cosmology and Astroparticle Physics;2010-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3